NVIDIA ha anunciado la cuarta versión de sus herramientas destinadas a los desarrolladores para que creen y para acelerar tareas mediante la tecnología NVIDIA CUDA. Estas herramientas denominadas CUDA Toolkit 4.0, estarán disponibles desde este viernes para los desarrolladores y pretenden ayudar y hacer más fácil la programación de mediante varias novedades para que puedan sacar el máximo provecho de la arquitectura paralela de los GPU de las tarjetas NVIDIA GeForce, NVIDIA Quadro y sistemas Tesla con soporte para CUDA. En esta nota una galeria con las nuevas características y mejoras que vienen con CUDA 4.0.
- NVIDIA GPUDirect 2.0 Technology — Offers support for peer-to-peer communication among GPUs within a single server or workstation. This enables easier and faster multi-GPU programming and application performance.
- Unified Virtual Addressing (UVA) — Provides a single merged-memory address space for the main system memory and the GPU memories, enabling quicker and easier parallel programming.
- Thrust C++ Template Performance Primitives Libraries — Provides a collection of powerful open source C++ parallel algorithms and data structures that ease programming for C++ developers. With Thrust, routines such as parallel sorting are 5X to 100X faster than with Standard Template Library (STL) and Threading Building Blocks (TBB).
- MPI Integration with CUDA Applications — Modified MPI implementations automatically move data from and to the GPU memory over Infiniband when an application does an MPI send or receive call.
- Multi-thread Sharing of GPUs — Multiple CPU host threads can share contexts on a single GPU, making it easier to share a single GPU by multi-threaded applications.
- Multi-GPU Sharing by Single CPU Thread — A single CPU host thread can access all GPUs in a system. Developers can easily coordinate work across multiple GPUs for tasks such as “halo” exchange in applications.
- New NPP Image and Computer Vision Library — A rich set of image transformation operations that enable rapid development of imaging and computer vision applications.
o performance analysis in the Visual Profiler
o New features in cuda-gdb and added support for MacOS
o Added support for C++ features like new/delete and virtual functions
o New GPU binary disassembler
No hay comentarios:
Publicar un comentario